Tricopper(II) Tellurate(VI)

By Lennart Falck and Oliver Lindqvist
Department of Inorganic Chemistry, Chalmers' University of Technology and the University of Göteborg, PO Box S-402 20 Göteborg 5, Sweden

and Jacques Moret
Laboratoire de Chimie Minérale C, Université des Sciences et Techniques du Languedoc, Place E. Bataillon, 34060 Montpellier, France
(Received 21 October 1977; accepted 5 November 1977)

Abstract

Cu}_{3} \mathrm{TeO}_{6}\), cubic, $I a 3, a=9.537$ (1) $\AA, Z=8$, $\rho_{x}=6.35 \mathrm{~g} \mathrm{~cm}^{-3}$. Refinement of the structure based on 330 independent reflections gave $R=0.022$. The structure is built up from TeO_{6} octahedra connected through Cu atoms. The $\mathrm{Te}-\mathrm{O}$ lengths are 1.921 (2) \AA $(6 \times)$, and the $\mathrm{Cu}-\mathrm{O}$ coordination distances are $1.949(2)(2 \times), 2.031(3)(2 \times)$ and $2.369(3) \AA(2 \times)$.

Introduction. The structure of $\mathrm{Cu}_{3} \mathrm{TeO}_{6}$ has been determined from powder data by Hostachy \& Coing-Boyat (1968). The $\mathrm{Te}^{\mathrm{VI}}$ atoms were shown to be surrounded by six chemically equivalent O atoms, as in $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ (Schulz \& Bayer, 1971) and $\mathrm{Te}(\mathrm{OH})_{6}$ (Lindqvist \& Lehmann, 1973). Such simple structures are of importance for a general discussion of octahedral $\mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ coordination.

Single crystals of $\mathrm{Cu}_{3} \mathrm{TeO}_{6}$ were prepared by hydrothermal synthesis. An aqueous solution of CuSO_{4} (1 $\left.\mathrm{mol} \mathrm{dm}{ }^{-3}\right)$ and $\mathrm{Te}(\mathrm{OH})_{6}\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was held at $700^{\circ} \mathrm{C}$ and 900 bar for one week, whereupon suitable crystals were deposited. The crystal selected for data collection was $0.13 \times 0.10 \times 0.13 \mathrm{~mm}$ and was mounted along \mathbf{c} on a two-circle Pailred diffractometer. Graphite-monochromated Mo Kır radiation was used, and intensities were measured with the ω-scan procedure and a scan speed of $2.5^{\circ} \mathrm{min}^{-1}$. The background was measured for 24 s at each end of the scan interval. The layers $h k 0-h k 12(k \geq 0)$ were explored out to $2 \theta \simeq 60^{\circ}$, giving 1543 significant reflections with $\sigma(I) / I<0.3$.

The data were corrected for Lorentz and polarization (program DATAP1; O. Lindgren, Göteborg) and absorption effects (program DATAP2; Coppens, Leiserowitz \& Rabinovich, 1965); $\mu_{\text {MоК } \alpha}=218.9 \mathrm{~cm}^{-1}$.

The space group Ia3 was confirmed by the systematic absences. Refinement was therefore commenced with the parameters given by Hostachy \& CoingBoyat (1968). A preliminary refinement with all 1543 observed reflections gave an R of 0.035 . The parameters varied were atomic coordinates, anisotropic temperature factors and an isotropic extinction factor (program LINUS, Coppens \& Hamilton, 1970). Before the final cycles, symmetry-related reflections were averaged giving 330 independent structure factors. Since each such structure factor was in general based on six $(n=6)$ independent measurements, it was considered profitable to use true statistical $\sigma(F)$ values according to $\sigma^{2}(F)=\sum_{i=1}^{n}\left(\bar{F}-F_{i}\right)^{2} / n(n-1)$. A final R of $0.026\left(R_{w}=0.023\right)$ was thus obtained and the resulting structural parameters are given in Table 1.* Scattering factors given by Cromer \& Waber (1965) were used for Te^{0} and by Doyle \& Turner (1968) for Cu^{0} and $\mathrm{O}^{\mathbf{0}}$. Correction for the real part of the

[^0]Table 1. Atomic parameters
The anisotropic temperature factor is expl $-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)$; the $U_{i j}$ values are multiplied by 10^{4}.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Te	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	35 (3)	35 (3)	35 (3)	4 (3)	4 (3)	4 (3)
Cu	0.96907 (6)	0	$\frac{1}{4}$	43 (2)	54 (2)	96 (2)	0	0	38 (2)
0	0.3675 (3)	$0 \cdot 1742$ (3)	$0 \cdot 3950$ (3)	7 (1)	64 (9)	43 (9)	18 (8)	23 (7)	16 (6)

anomalous scattering was applied for Te and Cu (Cromer, 1965).

The weight analysis (Table 2) shows some variation between the different F_{o} intervals. The effect is, however, reasonable, since there are few observations in each interval. The final refinement was also repeated with artificial weights according to Cruickshank's (1970) formula: $\sigma^{2}(F)=a+F_{n}+c F_{n}^{2}$, with $a=100 \cdot 0$ and $c=0.002$. The weight analysis did not improve, although R dropped to 0.022 . It is interesting to note that some rather small, but significant, differences occurred in both positional and thermal parameters, depending on which weighting procedure was used. The most obvious example is that the z coordinate of the O atom was 0.39502 (25) and 0.39679 (19) when absolute and artificial weights, respectively, were used.

Table 2. Agreement analysis
N is the number of reflections in each F_{0} interval and $w \Delta^{2}=$ $\Sigma_{N} w\left(F_{o}-\left|F_{c}\right|\right)^{2}$, where w corresponds to (a) statistical and (b) artificial weights.

		(a)	(b)
F_{o} interval	N	$w \Delta^{2}$	$w \Delta^{2}$
$0.0-25.0$	58	1.82	2.80
$25.0-28.2$	41	1.21	1.28
$28.2-31.7$	27	1.53	0.52
$31.7-36.5$	29	0.51	0.30
$36.5-41.4$	26	0.75	0.42
$41.4-49.9$	23	0.99	0.75
$49.9-67.6$	29	0.76	0.59
$67.6-86.0$	33	0.52	0.42
$86.0-111.3$	34	1.01	0.51
$111.3-355.0$	30	0.49	0.56

(a)

$\sigma^{2}\left(F_{o}\right)$	$\Sigma_{i-1}^{n}\left(\bar{F}_{o}-F_{o, i}\right)^{2} / n(n-1)$	
$R=\sum\| \| F_{o}-\left\|F_{\\|}\right\| \mid / \Sigma F_{o}$	0.026	
$R_{w}=\left(\Sigma w\left\|F_{o}-\left\|F_{c}\right\|\right\|^{2} / \Sigma w F_{o}^{2}\right)^{1 / 2}$	0.023	
	(b)	
$\sigma^{2}\left(F_{o}\right)$	$100 \cdot 0+F_{o}+0.002 F_{o}^{2}$	
$R=\Sigma \\| F_{o}-\left\|F_{c}\right\| \mid \Sigma F_{o}$	0.022	
$R_{w}=\left(\Sigma w\left\|F_{o}-\left\|F_{c}\right\|{ }^{2} / \Sigma w F_{o}^{2}\right)^{1 / 2}\right.$	0.031	

Table 3. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Cu}_{3} \mathrm{TeO}_{6}$

$\mathrm{Te}-\mathrm{O}$	$(6 \times)$	$1.921(2)$
$\mathrm{Cu}-\mathrm{O}(\mathrm{i})$	$(2 \times)$	$1.949(2)$
$\mathrm{Cu}-\mathrm{O}$ (ii)	$(2 \times)$	$2.031(2)$
$\mathrm{Cu}-\mathrm{O}$ (iii)	$(2 \times)$	$2.369(3)$
$\mathrm{O}-\mathrm{Te}-\mathrm{O}$	$(6 \times)$	$94.0(1)$
$\mathrm{O}-\mathrm{Te}-\mathrm{O}$	$(6 \times)$	$86.0(1)$
$\mathrm{O}(\mathrm{i})-\mathrm{Cu}-\mathrm{O}^{\prime}(\mathrm{i})$	$96.6(1)$	
$\mathrm{O}(\mathrm{i}-\mathrm{Cu}-\mathrm{O}$ (ii)	$85.6(1)$	

(i)- $\mathrm{Cu}-\mathrm{O}^{\prime}$ (ii)	166.3 (1)
O (i)- $\mathrm{Cu}-\mathrm{O}$ (iii)	91.9 (1)
O (i)- $\mathrm{Cu}-\mathrm{O}^{\prime}$ (iii)	$120 \cdot 6$ (1)
O (ii)- $\mathrm{Cu}-\mathrm{O}^{\prime}$ (ii)	95.5 (2)
O (ii)- $\mathrm{Cu}-\mathrm{O}$ (iii)	75.4 (1)
O (ii)- $\mathrm{Cu}-\mathrm{O}^{\prime}$ (iii)	72.6 (1)
O (iii)-Cu-O'(iii)	131.7 (1)

Discussion. Interatomic distances and angles are given in Table 3. The O atoms are approximately cubic close packed. The average volume per O atom is $18.1 \AA^{3}$, while the value for ideal close packing is $15.6 \AA^{3}$ (Pauling, 1960). This difference is due to the action of the Te and Cu coordination polyhedra.

The Cu atoms are surrounded by a distorted octahedral arrangement of O atoms (Table 3). The O atoms involved in the four strongest bonds are each shifted $0.2 \AA$ from a planar configuration. The $\mathrm{Cu}-\mathrm{O}$ interactions may thus be considered as mainly ionic, compared with the octahedral $\mathrm{Te}-\mathrm{O}$ bonds, and the structure may be considered as being built up from Cu^{2+} and TeO_{6}^{6-} ions.

The Te atom is situated on a threefold inversion axis, i.e. the Te bonding orbital system has $C_{3 i}$ symmetry. The same symmetry has also been found in $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ (Schulz \& Bayer, 1971), and the dimensions of the TeO_{6}^{6-} ion found in this structure are, within experimental error, the same as in $\mathrm{Cu}_{3} \mathrm{TeO}_{6}$. In $\mathrm{Mg}_{3} \mathrm{TeO}_{6}$ the $\mathrm{Te}-\mathrm{O}$ bond is 1.913 (3) \AA, and the $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angle generated by the threefold rotation is $94.2(1)^{\circ}$, corresponding to 1.921 (2) \AA and $94.0(1)^{\circ}$ in $\mathrm{Cu}_{3} \mathrm{TeO}_{6}$. It thus seems that the TeO_{6} unit when occurring as a TeO_{6}^{6-} ion is rigid and has a definite bond distance of 1.91-1.92 \AA. In $\mathrm{Te}(\mathrm{OH})_{6}$ the mean $\mathrm{Te}-\mathrm{O}$ bond distance was 1.910 (1) \AA (Lindqvist \& Lehmann, 1973).

The TeO_{6}^{6-} ion may occur in melts and in aqueous solutions under high pressure and temperatures.

The authors thank Professor Georg Lundgren and Professor Maurice Maurin for stimulating interest, and Dr Susan Jagner for revising the English text. This work was supported by the Swedish Natural Science Research Council (NFR).

References

Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104109.

Cruickshank, D.W.J. (1970). Crystallographic Computing, p. 195. Copenhagen: Munksgaard.

Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-399.
Hostachy, A. \& Coing-Boyat, J. (1968). C. R. Acad. Sci. Sér. B, 267, 1435-1438.
Lindqvist, O. \& Lehmann, M. S. (1973). Acta Chem. Scand. 27, 85-95.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Schulz, H. \& Bayer, G. (1971). Acta Cryst. B27, 815-821.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33149 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

